სტატიები / საქართველოში გამოცემული

ფილტრი

ფაკულტეტი/ინსტიტუტი:

დეპარტამენტები ვერ მოიძებნა

შეიყვანეთ სახელი: და გვარი:

ან

პირადი ნომერი:

მოცემულ კატეგორიაში წარმოდგენილია:  20 ჩანაწერი /  21728 ჩანაწერიდან.


ძებნის განულება

თ. ჯანგველაძე, M. Aptsiauri. The Asymptotic Behavior of Solutions and Finite Difference Scheme for One Nonlinear Integro-Differential Equation. Bull. Georgian Acad. Sci. 2006წ. V.174, N1, p.25-28.

Z. Kiguradze. The Asymptotic Behavior of the Solutions of One Nonlinear Integro-Differential Model. Proc. of I.Vekua Inst. Appl. Math. REPORTS. 2004წ. V.30, p.21-32.

Z. Kiguradze, T. Jangveladze. The Asymptotic Behavior of the Solutions of One Nonlinear Integro-differential Parabolic Equation. Rep. Enl. Sess. Sem. of I.Vekua Inst. Appl. Math. 1995წ. V.10, N1, p.36-38.

N. Poporadze, O. Seskuria. The availability of natural gas content shales of Kazbegi-Omalo. International conference ,,Innovation Technologes in Metallurgy and Material Sciences’’, ITMMS. 2015წ. .

G. Chixladze, G. Sh. Kevanishvili, I. G. Kevanishvili, K. V. Kotetishvili. The Axial Current Arising at Scattering of a Plane EM Wave from a Thin Conducting Plate. ჟ. “Nano Studies”, Tbilisi. 2016წ. № 13, pp. 13-16.

K. Kotetishvili, G. G. Chikhladze, G. Sh. Kevanishvili, I. G. Kevanishvili,. THE AXIAL CURRENT ARISING AT SCATTERING OF A PLANE EM WAVE FROM A THIN CONDUCTING PLATE. Nano-Studies. 2017წ. n.14.2017.

გ. ცერცვაძე. The Bag Model in Language Statistics.. Informational Sciences. 2002წ. 147.

D. Natroshvili. The basic contact problem for a sphere. Annot. Dokl. Sem. In-ta Prikl. Mat. Tbilis. Univ.,. 1973წ. 8,19-22.

G. Karseladze. The basic interface problem for bodies. Periodical Sci. J. “Intelecti” . 1999წ. No.3(6), 16-19 (Geor).

ე. მეძმარიაშვილი. The Bazic Principles of Greation of the large Deployable Space Antenna. სტუ, შრომები. 2009წ. N2 (472) .

ე. ელერდაშვილი. The bifurcation diagram of configuration cpaces of quadrilateral lincages. GTU, Ganatleba2(5), Tbilisi (2012), pp 265-269.. 0წ. Ganatleba2(5), Tbilisi (2012), pp 265-269..

ე. ელერდაშვილი. The bifurcation diagram of configuration cpaces of quadrilateral lincages. GTU, Ganatleba2(5), Tbilisi (2012), pp 265-269.. 0წ. Ganatleba2(5), Tbilisi (2012), pp 265-269..

L. Giorgashvili, Sh.Zazashvili, G.Sadunishvili, G.Karseladze. The Boundary Value Problems of Stationary Oscilations in the Theory of Two-temperature Elastic Mixtures. Memoirs on Differential Equations and Matematical Physics. 2012წ. 129-146. .

R. Gachechiladze, A. Gachechiladze. The boundary contact problem for hemitropic elastic solids with friction arising along the normal.. Proc. A. Razmadze Math. Inst. . 2013წ. 163 , 39-57.

G. Karseladze, K. Sxvitaridze. The boundary problem for the ball and the infinite space with the spherical cavity of viscous incompressible fluid. Problems of applied mechanics. 2004წ. No. 2(15), 83-88 (Rus).

Л. Гиоргашвили, I.Bezhuashvili. The boundary problems of the elastothermodiffusion for the infinite space with spherical cavity. Collection of the scientific works of the fund “Intelecti” for the renascence of sciences, Tbilisi. 1998წ. (01-06), N2, pp.12-14.

M. Kharashvili. The boundary value problem of steady-state oscillation for the infinite space with spherical cavity in asymmetrical theory. Scientific journal of IFToMM “Problems of Mechanics”. 2008წ. №1(30), 82-86.

K. Sxvitaridze, M. Kharashvili, M. Khmiadashvili. The boundary value problem of steady-state oscillation the infinite space with spherical cavity in asymmetrical theory. Scientific journal of IFToMM “Problems of Mechanics”. 2008წ. №1(30), 82-86.

K. Sxvitaridze. The boundary value problems for the ball in assimetrical theory. Problems of applied echanics.Georgia committee of IFToMM. 2005წ. № 3, 74-79.

K. Sxvitaridze, M. Kharashvili, M. Khmiadashvili. The boundary value problems of incompressible viscous fluid stationary current for stretched spheroid. Scientific journal of IFToMM “Problems of Mechanics”. 2008წ. №1(32), 69-79.